Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation.
نویسندگان
چکیده
L-type Ca(2+) channels play a critical role in regulating Ca(2+)-dependent signaling in cardiac myocytes, including excitation-contraction coupling; however, the subcellular localization of cardiac L-type Ca(2+) channels and their regulation are incompletely understood. Caveolae are specialized microdomains of the plasmalemma rich in signaling molecules and supported by the structural protein caveolin-3 in muscle. Here we demonstrate that a subpopulation of L-type Ca(2+) channels is localized to caveolae in ventricular myocytes as part of a macromolecular signaling complex necessary for beta(2)-adrenergic receptor (AR) regulation of I(Ca,L). Immunofluorescence studies of isolated ventricular myocytes using confocal microscopy detected extensive colocalization of caveolin-3 and the major pore-forming subunit of the L-type Ca channel (Ca(v)1.2). Immunogold electron microscopy revealed that these proteins colocalize in caveolae. Immunoprecipitation from ventricular myocytes using anti-Ca(v)1.2 or anti-caveolin-3 followed by Western blot analysis showed that caveolin-3, Ca(v)1.2, beta(2)-AR (not beta(1)-AR), G protein alpha(s), adenylyl cyclase, protein kinase A, and protein phosphatase 2a are closely associated. To determine the functional impact of the caveolar-localized beta(2)-AR/Ca(v)1.2 signaling complex, beta(2)-AR stimulation (salbutamol plus atenolol) of I(Ca,L) was examined in pertussis toxin-treated neonatal mouse ventricular myocytes. The stimulation of I(Ca,L) in response to beta(2)-AR activation was eliminated by disruption of caveolae with 10 mM methyl beta-cyclodextrin or by small interfering RNA directed against caveolin-3, whereas beta(1)-AR stimulation (norepinephrine plus prazosin) of I(Ca,L) was not altered. These findings demonstrate that subcellular localization of L-type Ca(2+) channels to caveolar macromolecular signaling complexes is essential for regulation of the channels by specific signaling pathways.
منابع مشابه
Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude.
This study demonstrates that caveolae, omega-shaped membrane invaginations, are involved in cardiac sodium channel regulation by a mechanism involving the alpha subunit of the stimulatory heterotrimeric G-protein, Galpha(s), via stimulation of the cell surface beta-adrenergic receptor. Stimulation of beta-adrenergic receptors with 10 micromol/L isoproterenol in the presence of a protein kinase ...
متن کاملRegulation of cardiac L-type calcium channels by protein kinase A and protein kinase C.
Voltage-dependent L-type Ca(2+) channels are multisubunit transmembrane proteins, which allow the influx of Ca(2+) (I:(Ca)) essential for normal excitability and excitation-contraction coupling in cardiac myocytes. A variety of different receptors and signaling pathways provide dynamic regulation of I:(Ca) in the intact heart. The present review focuses on recent evidence describing the molecul...
متن کاملCaveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes.
There is a growing body of evidence that G protein-coupled receptors function in the context of plasma membrane signaling compartments. These compartments may facilitate interaction between receptors and specific downstream signaling components while restricting access to other signaling molecules. We recently reported that beta(1)- and beta(2)-adrenergic receptors (AR) regulate the intrinsic c...
متن کاملStimulation of cardiac L-type calcium channels by extracellular ATP.
The co-release of ATP with norepinephrine from sympathetic nerve terminals in the heart may augment adrenergic stimulation of cardiac Ca(2+) channel activity. To test for a possible direct effect of extracellular ATP on L-type Ca(2+) channels, single channels were reconstituted from porcine sarcolemma into planar lipid bilayers so that intracellular signaling pathways could be controlled. Extra...
متن کاملParadoxical SR Ca2+ release in guinea-pig cardiac myocytes after beta-adrenergic stimulation revealed by two-photon photolysis of caged Ca2+.
In heart muscle the amplification and shaping of Ca(2+) signals governing contraction are orchestrated by recruiting a variable number of Ca(2+) sparks. Sparks reflect Ca(2+) release from the sarcoplasmic reticulum (SR) via Ca(2+) release channels (ryanodine receptors, RyRs). RyRs are activated by Ca(2+) influx via L-type Ca(2+) channels with a specific probability that may depend on regulatory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 19 شماره
صفحات -
تاریخ انتشار 2006